
АДРЕНЕРГИЧЕСКИЕ ПРЕПАРАТЫ

составитель:

д.м.н., доцент

С.В. Дьяченко

Хабаровск, 2016

АДРЕНЕРГИЧЕСКИЕ ПРЕПАРАТЫ

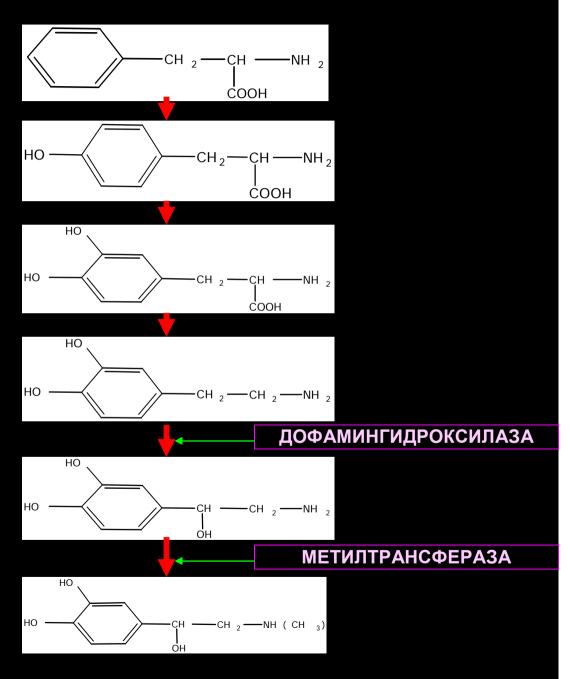
- **О** Передача импульса в адренергических синапсах осуществляется с помощью катехоламинов:
- **Ø** Адреналин;
- **Ø** Норадреналин;
- **Ø** Дофамин.
- **О Существование трех катехоламиновых медиаторов эволюционно обусловлено и не является случайным.**
- **В** Каждый из них обладает сродством к определенному типу рецепторов, благодаря чему нервная система может более дифференцированно влиять на функции органов.

БИОСИНТЕЗ

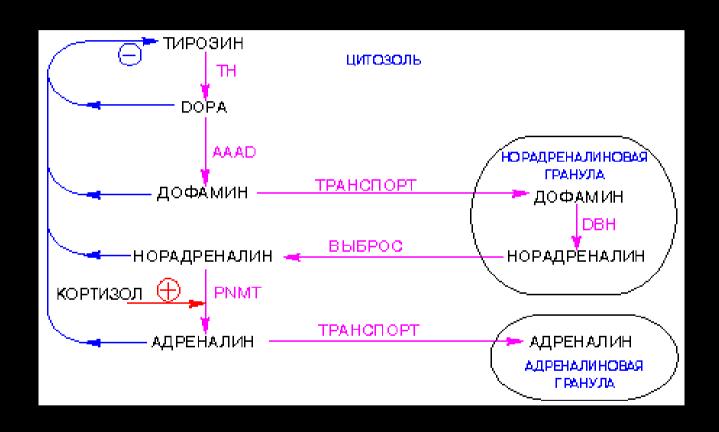
- **Ø** Осуществляется из аминокислоты ТИРОЗИНА (поступает с пищей много в твороге, сыре, бобовых, шоколаде);
- И аминокислоты ФЕНИЛАЛАНИНА, которая превращается в тирозин в печени.

БИОСИНТЕЗ

Ø Фенилаланин

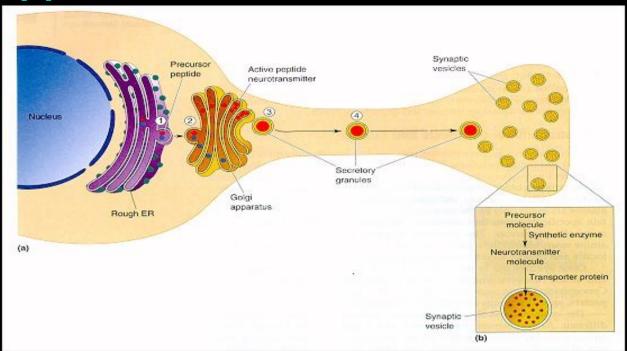

Ø Тирозин

Ø Диоксифенилаланин (ДОФА)


Ø Дофамин

Ø Норадреналин

Ø Адреналин



БИОСИНТЕЗ

БИОСИНТЕЗ

- В дофаминергических синапсах биосинтез медиатора идет до дофамина, который депонируется в гранулах и выбрасывается в синаптическую щель при поступлении нервного импульса.
- **В** норадренергических синапсах до норадреналина (уже в гранулах).
- В адренергических синапсах до адреналина (нейроны некоторых областей ЦНС, мозговое вещество надпочечников).

Депонирование КА в гранулах происходит за счет связывания со специфическим белком и АТФ.

Различают три формы КА в нервных окончаниях:

Резервный пул в везикулах (до 80% депонированного КА), который не освобождается при поступлении нервного импульса до истощения остальных пулов.

О Депонирование КА в гранулах происходит за счет связывания со специфическим белком и АТФ.

Различают три формы КА в нервных окончаниях:

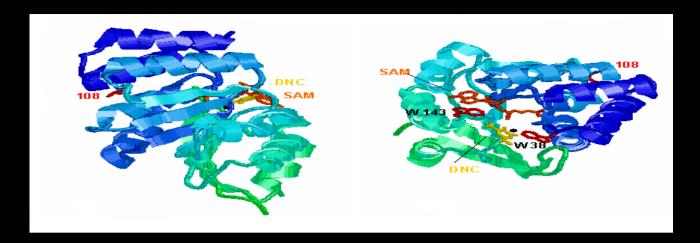
- Мобилизационный пул II (остальные 20%) − непосредственно выбрасывается в синаптическую щель при поступлении импульса.

ИНАКТИВАЦИЯ МЕДИАТОРА

- **Б**ольшая часть медиатора подвергается обратному захвату (80%).
- **Ø** Инактивации подвергается 20%.
 - С помощью 2-х реакций:
- **ü** *Метилирование* (КОМТ) встроен в постсинаптические мембраны.

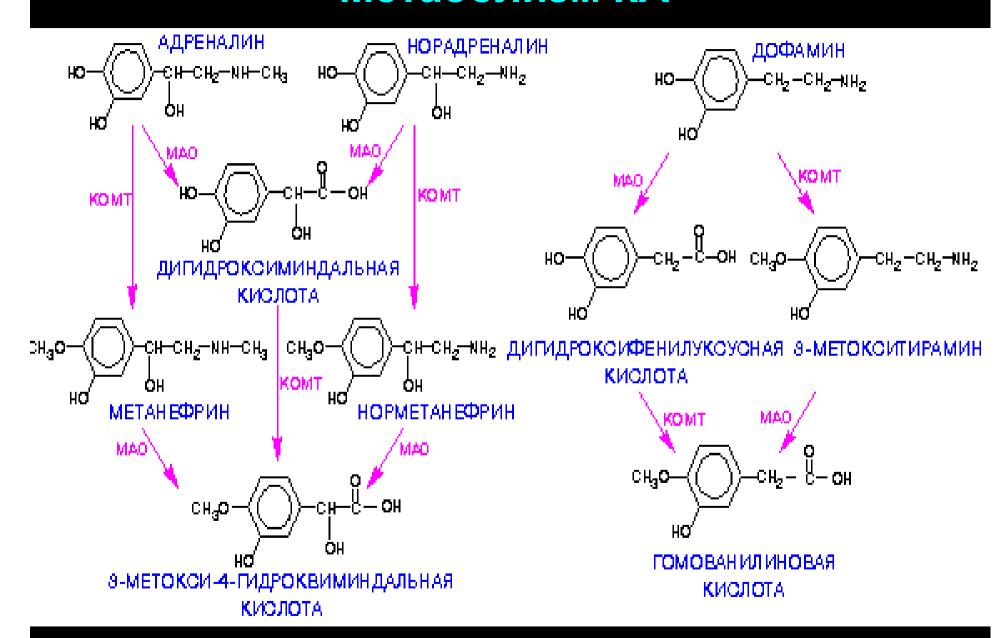
Инактивация выделившихся в синаптическую щель КА идет по двум путям:

- Внутриклеточное окислительное дезаминирование с помощью моноаминоксидазы (МАО) митохондрий (таким способом инактивируется 10-20% медиатора).
- МАО имеется также в печени и других тканях и обеспечивает инактивацию порций медиатора, диффундирующих из синапса и секретируемых надпочечниками КА.


Норадреналин — 3,4 – диоксиминдальная кислота

Инактивация выделившихся в синаптическую щель КА идет по двум путям:

Метилирование с помощью особого фермента, встроенного в постсинаптические мембраны, в мембраны печеночных и других клеток, - катехол-о-метилтрансферазы (КОМТ) (по этому пути инактивации идет до 80-90% метаболизирующихся КА).


Норадреналин — норметадреналин

КОМТ

ØМАО (митохондрии) и КОМТ(цитозоль) широко представлены в организме, наибольшие концентрации в печени и почках.
ØМало КОМТ в симпатических нервных волокнах на периферии и пресинаптических окончаниях в ЦНС (много в постсинаптических контактах и глии).
ØВ почках КОМТ находится в эпителиальных клетках проксимальных трубочек, где синтезируется дофамин и реализует свою местную диуретическую и натрийуретическую активность.

Метаболизм КА

АДРЕНЕРГИЧЕСКИЕ СИНАПСЫ Фенилаланин 3,4 – диоксиминдальная кислота MAO Мобилизационный Резервный Норадреналин пул I пул Норметадреналин Норадреналин Ca **KOMT** Ca

РЕЦЕПТОР:

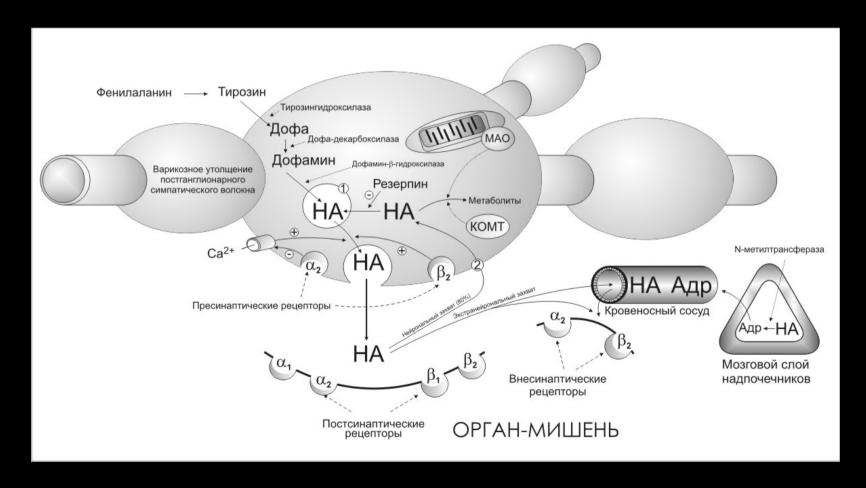
- **О**Алквист в 1948 г. предположил, что КА действуют на два типа рецепторов α и b.
- **О**Локализация: постсинаптическая мембрана, пресинаптическая мембрана, вне синапсов.

Альфа-1- адренорецепторы

- **Ø**альфа1А 560,
- **Ø**альфа1В 515,
- **Ø**альфа1D 466 Aa

Все альфа1-рецепторы стимулируют фосфоинозитидный обмен.

Альфа- 2 – адренорецепторы


Øальфа2A - 450

Øальфа2В - 450

Øальфа2С – 461Aa

Адренорецепторы делятся на:

Øb₁, b₂, b₃;

- Все альфа-рецепторы подразделяются на альфа-1- и альфа-2-рецепторы.
- **Ø** Если альфа-1-адренорецепторы локализованы постсинаптически, то альфа-2-адренорецепторы локализованы на пресинаптических мембранах и внесинаптически.
- Основная роль пресинаптических альфа-2адренорецепторов заключается в их участии в системе ОБРАТНОЙ ОТРИЦАТЕЛЬНОЙ СВЯЗИ, регулирующей освобождение медиатора норадреналина. Возбуждение этих рецепторов тормозит освобождение норадреналина из варикозных утолщений симпатического волокна.

- При возбуждении пресинаптических α2адренорецепторов выделение норадреналина уменьшается;

Тип рецептора	Локализация	Результат активации
α_1	Глаз Радиальная мышца радужки	Сокращение, расширение зрачка (мидриаз)
	Сосуды кожи, слизистых, внутренних органов	Сужение
	Селезенка	Сокращение
	Миометрий	Сокращение
	Желудок и кишечник	Снижение тонуса и моторики, повышение тонуса сфинктеров
	Мочевой пузырь	Спазм сфинктера мочевого пузыря (задержка мочи)

Тип рецептора	Локализация	Результат актин	зации
a 2	Пресинаптическая мембрана	Снижение катехоламинов	выброса
	ЦНС	Угнетение активирующих сосудистую систему	структур, сердечно-
	Эндотелий сосудов (внесинаптическая локализация)	Сужение	

Тип рецептора	Локализация	Результат активации
b ₁	Сердце Синусовый узел Миокард Атриовентрикулярный узел Пучок и ножки Гиса	Повышение возбудимости, учащение сердечных сокращений Увеличение силы сокращений Увеличение проводимости Увеличение автоматизма
	Юкстагломерулярная ткань в почках	Увеличение освобождения ренина

Тип рецептора	Локализация	Результат активации
b ₂	Сосуды скелетной мускула- туры, коронарные, сосуды печени и другие	Расширение
	Гладкая мускулатура бронхов	Релаксация
	Беременная матка	Ослабление и прекращений
	b-клетки островков поджелудочной железы	Увеличение секреции инсулина
	Юкстагломерулярная ткань в почках	Увеличение освобождения ренина
	Печень и скелетные мышцы	Повышение гликогенолиза
b ₃	Жировая ткань	Увеличение липолиза

Локализация дофаминовых рецепторов и результаты их активации.

Тип рецептора	Локализация	Результат активации
d ₁	Гладкая мускулатура сосудов почек, брыжейки, кишечника, сердца, мозга	Расширение
	ЦНС	Повышение двигательной активности
	Гипоталамус	Снижение секреции пролактина
	Триггерная зона продолговатого мозга зона	Тошнота, рвота
\mathbf{d}_2	Пресинаптическая мембрана	Снижение выброса катехоламинов

Передача импульса

Все адренергические рецепторы имеют классическую для рецептор<u>ов,</u> сопряженных с Gтрансмембранных доменов с N-концом полипептида концом - внутри клетки.

Functional domains of the β2-adrenoceptor

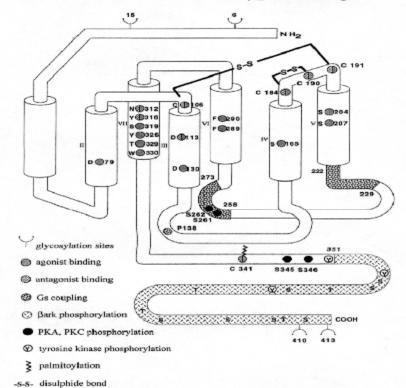
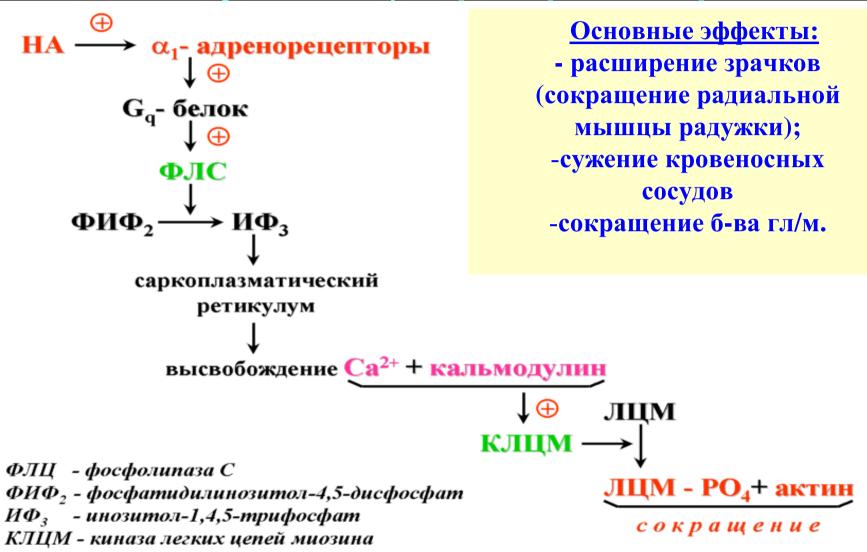



Figure 1 The 'pipedream' compilation model of theβ₂-adrenoceptor showing the major functional domains. Large-diameter sections represent the membrane-spanning regions of the receptor [1–VII] with the outside of the cell towards the top and the inside to the bottom of the model. Amino acids are identified by using the single letter convention.

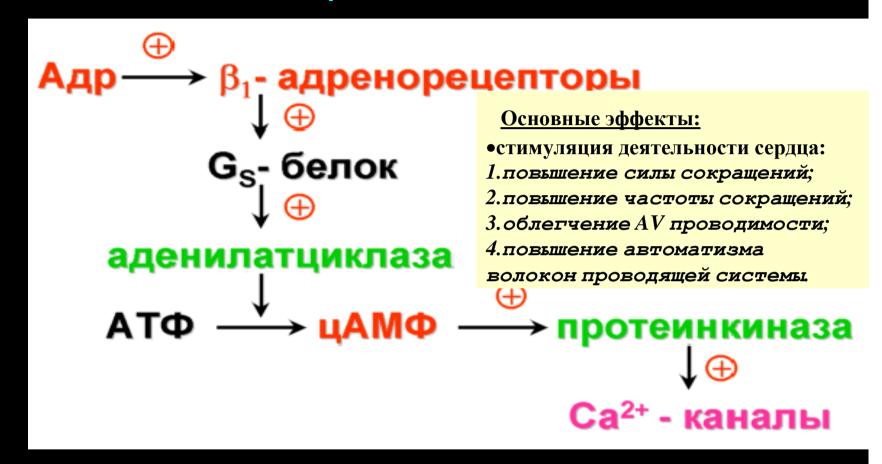
Передача импульса


тип АР	G-белок	б\х эффектор
бета1	G_{s}	↑ АЦ; ↑L-типа Са++-каналов
бета2	G_{s}	†АЦ
бета3	G_{s}	†АЦ
альфа 1	$G_{\mathbf{q}}$	↑ФЛ-С
	$G_{\mathbf{q}}$	↑ФЛ-Д
	G_q , G_i	↑ФЛ-А2
	$G_{\mathbf{q}}$	↑Cа++-каналы
альфа2	G _{i 1.2.3}	↓АЦ
	$G_{i}(\beta\gamma$ -субъед)	↑К+-каналы
	G_0	↓Са++-каналы (L и N-типов)
	?	↑ФЛ-С, ФЛ-А2

Стимуляция а₁-адренорецепторов

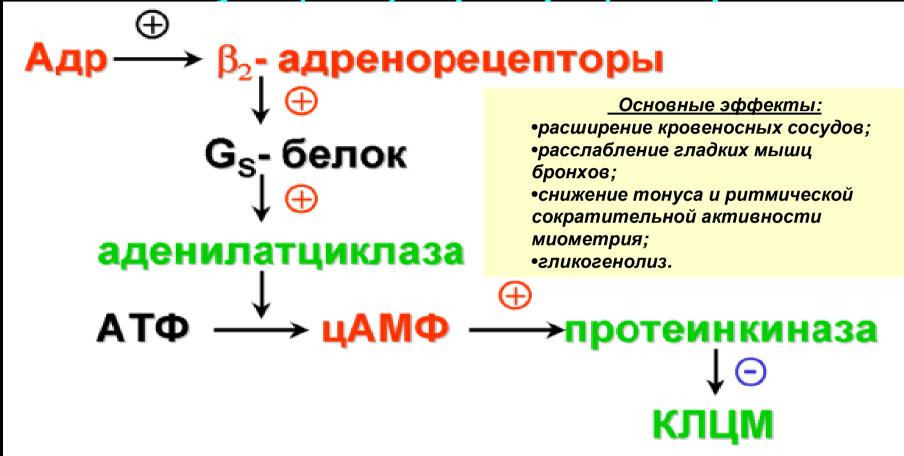
Стимуляция а₂-адренорецепторов

- **Все альфа2-рецепторы ингибируют** аденилатциклазу.
- **Øальфа2А-рецепторы зависимое от G-белков (бета-гамма) активирование К⁺-каналов,**
- Øальфа2А- и альфа2В-рецепторы Gбелок зависимое ингибирование Са⁺⁺ - каналов.



Основной эффект: сужение кровеносных сосудов.

Альфа 2 А



Стимуляция β₁-адренорецепторов

Ионы Ca2+, поступающие через Ca2+-каналы, активируют выход Ca2+ из саркоплазматического ретикулума кардиомиоцитов. Связывая тормозной комплекс тропонин-тропомиозин, ионы Ca2+ способствуют взаимодействию актина и миозина.

Стимуляция b2-адренорецепторов

В гладких мышцах активация протеникиназы ведет к снижению активности киназы легких цепей миозина, уменьшению фосфорилирования легких цепей миозина - расслабление гладких мышц.

В клетках печени протеинкиназа угнетает гликогенсинтетазу и активирует фосфорилазу; в результате повышается гликогенолиз.

АДРЕНЕРГИЧЕСКИЕ ПРЕПАРАТЫ

- **Возможности фармакологического воздействия на адренергическую передачу нервных импульсов довольно разнообразны.**
- М Направленность действия веществ может быть следующей:
- 1) влияния на синтез норадреналина;
- 2) нарушение депонирования норадреналина в везикулах;
- 3) угнетение ферментативной инактивации норадреналина;
- 4) влияние на выделение норадреналина из окончаний;
- 5) нарушение процесса обратного захвата норадреналина пресинаптическими окончаниями;
- 6) угнетение экстранейронального захвата медиатора;
- 7) непосредственное воздействие на адренорецепторы эффекторных клеток.

КЛАССИФИКАЦИЯ АДРЕНЕРГИЧЕСКИХ ПРЕПАРАТОВ

- Учитывая преимущественную локализацию действия, все основные препараты, влияющие на передачу возбуждения в адренергических синапсах, делятся на 3 основные группы:
 - І. АДРЕНОМИМЕТИКИ (прямого и непрямого механизма действия) препараты, стимулирующие адренорецепторы, действующие подобно медиатору НА, подражающие ему.
 - II. АДРЕНОБЛОКАТОРЫ препараты, угнетающие адренорецепторы.
 - III. СИМПАТОЛИТИКИ препараты, оказывающие блокирующий эффект на адренергическую передачу с помощью непрямого механизма.

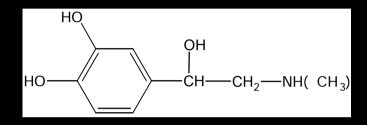
Классификация адреномиметических препаратов

- 1. Стимулирующие а и b-адренорецепторы
- Ø Эпинефрин (Адреналина гидрохлорид) (b1 b2 a1 a2)
- **Ø** Норэпинефрин (Норадреналина гидротартрат) (a1 a2 b1)
 - 2. Стимулирующие преимущественно а -адренорецепторы
- **Ø** Фенилэфрин (Мезатон) (a1)
- Мафазолин (Нафтизин) (а2)
- Ксилометазолин (Галазолин) (а2)
 - 3. Стимулирующие преимущественно b-адренорецепторы
- **Ø** Добутамин (b1)
- **Ø** Сальбутамол (b2)
- **Ø** Сальметерол (серевент) (b2)
- **Ø** Фенотерол (беротек, партусистен) (b2)
- **Ø** Формотерол (форадил) (b2)
 - 4. Непрямого действия (симпатомиметик)
- **Ø** Эфедрина гидрохлорид

Классификация адреномиметических препаратов

Дофаминомиметики.

Непрямого действия (влияют на пресинаптические дофаминовые рецепторы, регулирующие синтез и выделение дофамина и норадреналина):


- **Ø** леводопа
- **мидантан (амантадина гидрохлорид)**
- **Ø** амфетамин (фенамин)

Прямого действия (влияют на постсинаптические дофаминовые рецепторы):

- **Ø** дофамин (допамин, допмин)
- **бромокриптин (парлодел)**

α- и b-адреномиметики

Эпинефрин (адреналина гидрохлорид): Epinephrine, syn. Adrenalini hydrochloridum. (b1 b2 a1 a2)

- **Ф**Формы выпуска:
- **Ø**амп. 0,1% 1 мл
- **Ø**флаконы 0,1% 10 мл

- Гормон мозгового слоя надпочечников, наиболее типичный представитель этой группы. Получают синтетическим путем.
- При приеме внутрь быстро инактивируется, через гематоэнцефалический барьер не проникает.
- В тканях связывается с адренорецепторами всех типов, возбуждая их.

МЕХАНИЗМ ДЕЙСТВИЯ:

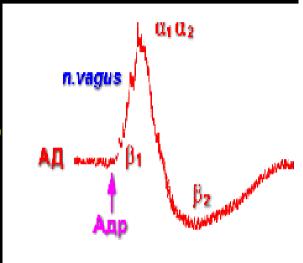
- оказывает прямой, непосредственный, возбуждающий эффект на альфа- и бета-адренорецепторы, поэтому он прямой адреномиметик.
- В малых дозах и концентрациях возбуждает только β-адренорецепторы (наиболее чувствительны β2), в больших дозах действует и на α-, и на β-адренорецепторы.

Влияние на сердечно-сосудистую систему

- Возбуждая β-1-адренорецепторы адреналин увеличивает все 4 функции сердца, оказывает кардиостимулирующий эффект:
- **О** повышает силу сокращений, то есть увеличивает сократимость миокарда (положительный инотропный эффект);
- **повышает частоту сокращений** (положительный хронотропный эффект);
- **у**лучшает проводимость (положительный дромотропный эффект);
- **о** повышает автоматизм (положительный батмотропный эффект).

Влияние на сердечно-сосудистую систему

- В результате повышается:
- **О** сила сердечных сокращений
- **Ø** систолический объем крови (СОК)
- **минутный объем крови (МОК)**
- **Ø** потребность в О₂ и питательных веществах


Сосуды.

- Характер действия зависит от соотношения количеств α- и b-адренорецепторов в гладкомышечных клетках сосудов.
- При поступлении импульсов через α₁ сосуды суживаются (кожи, подкожной клетчатки и слизистых оболочек), через b₂ расширяются (сосуды скелетной мускулатуры, внутренних органов).

Реакция сосудов внутренних органов зависит от дозы адреналина:

- в малых дозах сосуды расширяются, т.к. b₂-адренорецепторы более чувствительны к адреналину;
- результате возбуждения α-адренорецепторов.

- © Стимулируя α₁- и α₂-адренорецепторы,
 адреналин суживает кровеносные сосуды.
 Однако, одновременно адреналин
 стимулирует b₂-адренорецепторы сосудов,
 что ведет к их расширению.
- **О**Увеличение сердечного выброса и сужение сосудов ведут к повышению среднего артериального давления.
- Однако, за повышением артериального давления может последовать его снижение (возбуждение b2-адренорецепторы сосудов).

АД - артериальное **даеление Адр - адре**яалин

Доза адреналина	Активируемые рецепторы	УО	ЧСС	ОПСС
0,015 - 0,03	β1 и β2	↑ ↑	↑ ↑	
0,03-0,15	β1,β2 и α	↑ ↑↑	↑ ↑↑	↑ ↓
Свыше 0,15	α и β1,β2	↑ ↓	↑ ↑↑	↑ ↑↑

Глаз.

- **Ø** С действием адреналина на α-адренорецепторы связаны его эффекты на орган зрения.
- Данный эффект кратковременен, практического значения не имеет, имеет только физиологическое значение (чувство страха, "у страха глаза велики").
- **б** Кроме этого уменьшается внутриглазное давление (уменьшение образования внутриглазной жидкости).

Влияние на гладкомышечные органы.

- **ЖКТ.** Снижение тонуса гладкой мускулатуры ЖКТ, но тонус сфинктеров повышен.
- **Мочевой пузырь.** Расслабление детрузора (b2-адренорецепторы), но повышение тонуса сфинктера (α1-адренорецепторы).
- © Сокращение капсулы селезенки сопровождается выбросом в кровь большого количества эритроцитов. Последнее носит защитный характер при реакциях напряжения, например, вследствие гипоксии и кровопотери.

Влияние на гладкомышечные органы.

- **Ø** Бронхи.
- **В**озбуждение бета-2-адренорецепторов ведет к расширению бронхов бронходилатации.
- Оказывает противоаллергическое действие, уменьшая выход медиаторов аллергии из тучных клеток (b-эффект).

Влияние на обмен веществ.

- **Ø** Адреналин катаболический гормон в отношении углеводов и жиров.
- Усиливает гликогенолиз (разрушение гликогена с образованием глюкозы), возбуждая b2-адренорецепторы печени и мышечной ткани.
- **В** результате возникает гипергликемия. Этот эффект адреналина используется при гипогликемической коме у больных сахарным диабетом.

Влияние на обмен веществ.

Активизирует липолиз в жировой ткани с образованием глицерина и жирных кислот (b3-адренорецепторов).

ДЕЙСТВИЕ НА ЦНС

- **Ф**армакологического значения не имеет.

Биотрансформация.

Показания:

- **Ø** Экстренная терапия внезапной остановки сердца.
- **О** Аллергические заболевания, анафилактический шок.
- Купирование приступов бронхиальной астмы.
- **Гипогликемическая кома.**
- **Острая гипотензия (в/в, в/м введение).**
- В комбинации с местными анестетиками для пролонгирования действия последних (1 капля 0,1% p-pa на 2-10 мл местного анестетика).

ПОБОЧНЫЕ ЭФФЕКТЫ

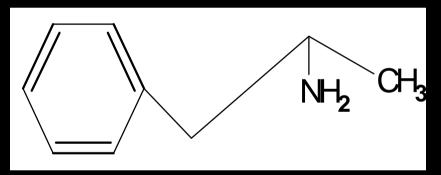
- При в/в введении адреналин может вызвать аритмии сердца, в виде желудочковой фибрилляции. Аритмии особенно опасны при введении адреналина на фоне действия препаратов, сенсибилизирующих к нему миокард (наркозные препараты, например фторсодержащие общие анестетики фторотан). Это существенный нежелательный эффект.
- **Возможны отек легких, кровоизлияние в мозг вследствие резкого повышения артериального давления.**

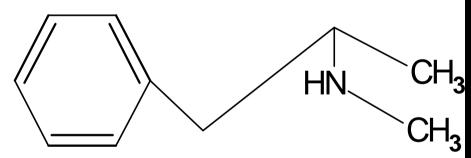
ПОБОЧНЫЕ ЭФФЕКТЫ

Противопоказан при:

- **ØИБС**,
- **Ø** аритмии,
- **Ø** сердечной недостаточности,
- **Ø** артериальной гипертензии,
- **Ø** атеросклерозе,
- **Ø** тиреотоксикозе,
- **Ø** сахарном диабете.

Rp: Sol. Epinephrine hydrochloridi 0,1% - 1 ml D.t.d. N 10 in amp. S. Водить по 0,5 мл п/к

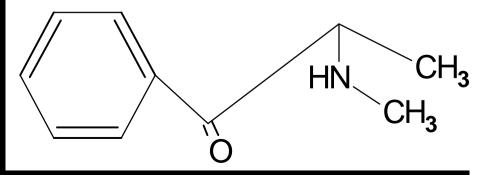

- В отличие от адреналина, норадреналина действующего непосредственно на альфа-, бета адренорецепторы, имеются средства, оказывающие аналогичные фармакологические эффекты опосредованно.
- **У** Это так называемые адреномиметики непрямого действия или симпатомиметики.



Фенилалкиламины

• Амфетамин

Метамфетамин

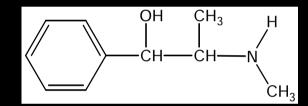


• Эфедрин

OH CH₃

Эфедрон

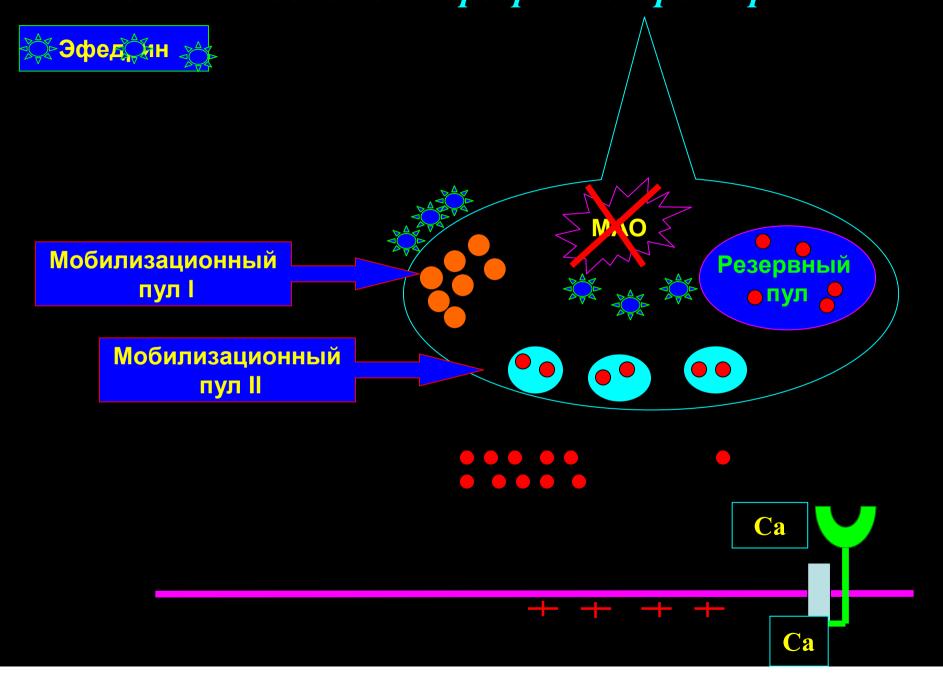
Адреномиметики непрямого типа действия (пресинаптического).


Ø Эфедрина гидрохлорид: Ephedrini hydrochloridum

Формы выпуска:

Ø табл. по 0,025

Ø амп. 5% - 1 мл


У Хорошо всасывается при любых способах введения и проникает в ЦНС.

- Иа Руси называлась Кузьмичева трава.
- **Ø** Эфедрин применяют с 1924 г.
- По химической структуре близок к адреналину, но лишен гидроксилов в ароматическом кольце, отличается низкой полярностью и высокой липофильностью.

Механизм действия эфедрина гидрохлорида

Формирование физической зависимости на эфедрин ∦Эф¦Дан *≱* Нет эфедрина Резервный Мобилизационный пул I опул 🤚 Мобилизационный пул II Норметадреналин Норадреналин **KOMT** Ca

Механизм действия:

- **У**величивает высвобождение норадреналина из пресинаптической мембраны.
- Угнетает обратный нейрональный захват норадреналина из синаптической щели в везикулы.
- **Ингибирует МАО.**
- Оказывает прямое стимулирующее влияние на адренорецепторы (α- и bадренорецепторы) – важно для понимания зависимости.

- Фармакологические эффекты аналогичны эффектам адреналина:
- **окращений**;
- **Ø** увеличивает МОК, СОК;
- Вызывая сужение сосудов (α1адренорецепторы), повышает ОПСС и, следовательно, повышает АД;
- **о** тонус гладкой мускулатуры бронхов снижает.

- В качестве препарата, стимулирующего адренергические синапсы, эфедрин отличается от адреналина меньшей активностью примерно в 7-10 раз, большей стойкостью (эффективен при приеме внутрь) и более продолжительным действием.
- Ø Эфедрин суживает кровеносные сосуды и стимулирует работу сердца. В связи с этим эфедрин повышает артериальное давление; длительность действия 1-1,5 ч.

- **Такое явление обозначают термином** «тахифилаксия» (быстрое привыкание).
- ∅ Это связано с тем, что запасы медиатора в нервном окончании не успевают быстро восстанавливаться, и при очередном введении в синаптическую щель будет выбрасываться меньше норадреналина, чем при предыдущем введении эфедрина.

- **Ø** Эфедрин стимулирует ЦНС.
- Он повышает умственную и физическую работоспособность, придает бодрость, временно уменьшает потребность во сне, улучшает настроение, оживляет моторику, тонизирует дыхательный и сосудодвигательный центры продолговатого мозга.
- **О Это находит применение в психиатрической и анестезиологической клиниках.**
- **При систематическом применении возможно развитие психической зависимости.**

Эфедрина гидрохлорид

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ ?:

- как бронхолитик при бронхиальной астме (для купирования в/в, для курсового лечения – внутрь), при сенной лихорадке, сывороточной болезни; анафилактическом шоке
- иногда для повышения АД, при хронической гипотонии, гипотонической болезни, травмах, кровопотере (в/в);
- эффективен при насморке, т. е. ринитах, когда закапывают раствор эфедрина в носовые ходы (местное суживание сосудов, снижается секреция слизистой носа);
- используется при AV-блоке, при аритмиях этого генеза;
- в офтальмологии для расширения зрачка (капли);
- В психиатрии при лечении больных с нарколепсией (особое психическое состояние с повышенной сонливостью и апатией), когда введение эфедрина направлено на стимуляцию ЦНС.
- при отравлениях снотворными и наркотическими средствами, то есть - средствами, угнетающими ЦНС;
- иногда при энурезе (ночное недержание мочи);
- в анестезиологии при проведении спинномозговой анестезии (профилактика снижения АД).

Эфедрина гидрохлорид

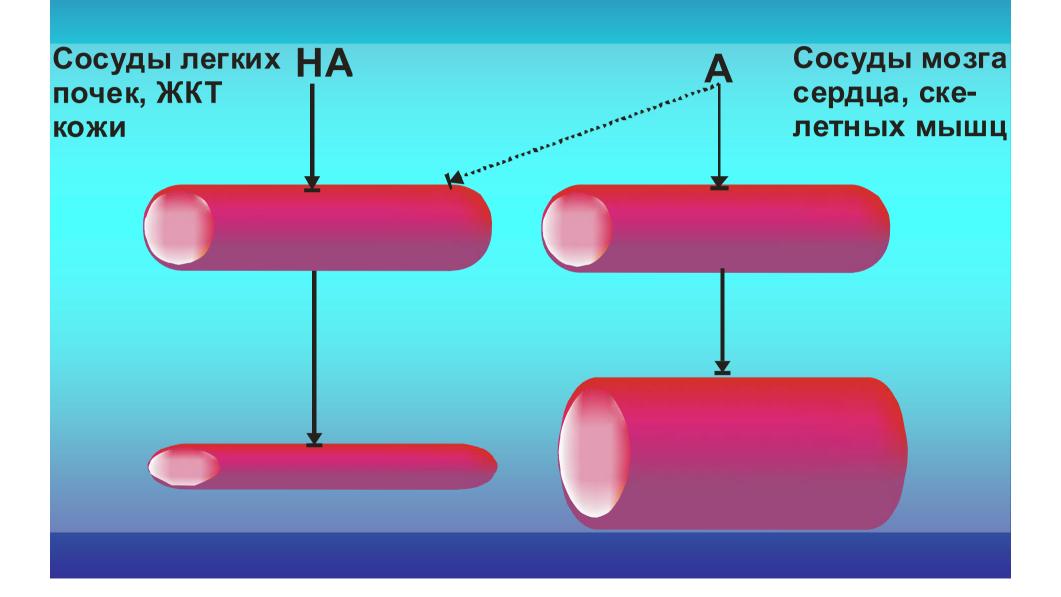
Побочные эффекты:

- **Ø** нервное возбуждение,
- **Ø** бессонница,
- **Ø** тремор,
- **О ПСИХИЧЕСКАЯ ЗАВИСИМОСТЬ,**
- **Ø** задержка мочи,
- **рвота**,
- **Ø** усиление потоотделения.

Эфедрина гидрохлорид

Противопоказания:

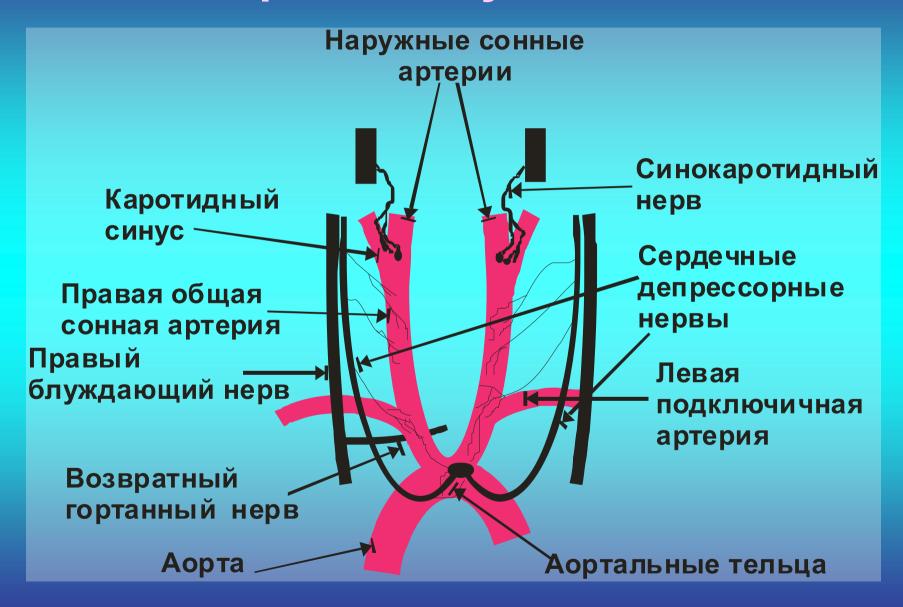
- **Ø** Бессонница.
- **Гипертензия.**
- **Ø** Атеросклероз.
- **Ø** Гипертиреоз.
- **©** Сахарный диабет.


Норэпинефрин (норадреналина гидротартрат): Norepinephrine, syn. Noradrenalini hydrotartras.

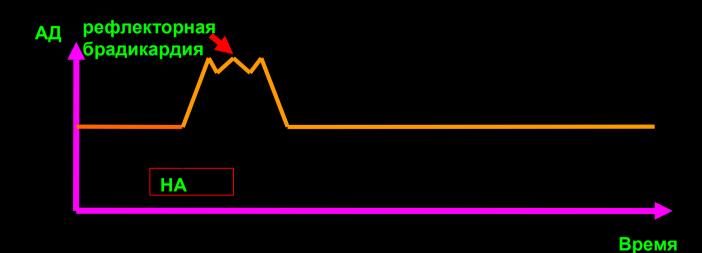
- **Ф**Формы выпуска:
- **Ø**амп. 0,2% 1 мл
- **Вводить только в/в в растворе** глюкозы.
- **ОПри подкожном введении** развивается некроз.

- **О** Норадреналин (норэпинефрин) по химической структуре соответствует естественному медиатору норадреналину.
- **О** Преимущественно активирует α_1 -адренорецепторы, слабее α_2 и b_1 -адренорецепторы.

- Основным эффектом НА является выраженное, но непродолжительное (в течение нескольких минут) повышение АД (увеличение в 5-10 раз сильнее, чем у адреналина и отсутствует снижение АД).
- Ø Это обусловлено прямым стимулирующим влиянием норадреналина на α₁- и α₂- адренорецепторов сосудов и повышением их периферического сопротивления, что приводит к повышению артериального давления.
- В отличие от адреналина повышается систолическое, диастолическое и среднее артериальное давление.


Влияние норадреналина и адреналина на сосудистый тонус

Влияние на сердце.


- Однако в целом организме из-за повышения артериального давления рефлекторно активируются тормозные влияния вагуса и обычно развивается брадикардия.
- **©** Если блокировать влияния вагуса атропином, норадреналин вызывает тахикардию.

Рецепторные сосудистые зоны

- Ø Вены под влиянием НА суживаются. Ухудшается кровоток в головном мозге, легких, коже, органах пищеварения, почках, скелетных мышцах, усиливается гипоксия тканей.
- **У** больных ИБС возможен коронароспазм.

ЧСС	?? (↓, ↑, если АД не меняется)
Сократимость	$\uparrow \uparrow$
АД	$\uparrow\uparrow\uparrow\uparrow$
ОПСС	$\uparrow\uparrow\uparrow\uparrow$
ЦВД	↑↑ (эффект веноконстрикции)

- Ма углеводный и жировой обмен не действует.

ПОБОЧНЫЕ РЕАКЦИИ при использовании норадреналина наблюдаются редко. Они могут быть связаны с возможным:

- **Ø** нарушением дыхания;
- **Ø** головной болью;
- **о** проявлением аритмий сердца при сочетании со средствами, повышающими возбудимость миокарда;
- На месте инъекции возможно появление некроза тканей (спазм артериол), поэтому вводят в/в, капельно.

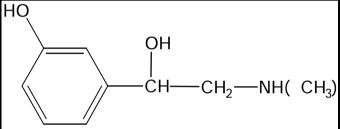
Показания:

- **О Используют при состояниях,** сопровождающихся острым падением АД.
- **У** Чаще всего это травматический шок, обширные хирургические вмешательства.

Норэпинефрин (Норадреналина Гидротартрат) Противопоказания:

- **Ø** Аритмии.
- **Ø** Галотановый наркоз.
- **О При кардиогенном (инфаркт миокарда) и** геморрагическом шоке (кровопотеря) с выраженной гипотензией норадреналин применять нельзя, так как в еще большей степени ухудшится кровоснабжение тканей из-за спазма артериол, то есть наступит ухудшение микроциркуляции (централизация кровообращения, микрососуды спазмированы - на этом фоне норадреналин еще в большей степени ухудшит положение больного).

Основной путь введения норадреналина в/в капельно(в ЖКТ - разлагается; п/к некроз на месте инъекции).

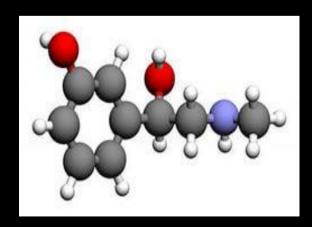


α1- адреномиметики.

Ø Фенилэфрин (Мезатон) Mesatonum, syn. Phenylephrine.

Формы выпуска:

Ø амп. 1% - 1 мл



- **О Повышает ОПСС в результате чего повышается и АД.**

- **О** Прессорное его действие ведет к длительному повышению АД.

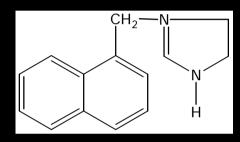
ЧСС	↓↓ (рефлекс на ↑ АД)
Сократимость	↑
АД	$\uparrow\uparrow\uparrow$
ОПСС	$\uparrow\uparrow\uparrow\uparrow$
Преднагрузка	↑ (веноконстрикция)

Показания:

- Резорбтивно используют исключительно как прессорное средство при различных формах артериальной гипотензии, в/в при нетяжелом коллапсе, в том числе на фоне наркоза т.к. не вызывает аритмию.
- **Можно сочетать с местными анестетиками.**
- Для расширения зрачка в глазной практике, для снижения внутриглазного давления (открытоугольная форма глаукомы), для осмотра
 - глазного дна и лечения конъюнктивита (глазные капли 1-2%).

Противопоказан:

- **О** при артериальной гипертензии,
- **Ø** атеросклерозе,
- **©** спазмах периферических сосудов,
- **Ø** тиреотоксикозе,
- 💋 хронических заболеваниях сердца.


Rp: Sol. Phenylephrine 1% - 1 ml D.t.d. N. 10 in amp. S. По 0,5 мл в/в, однократно

α2- адреномиметики.

- **Ø** Ксилометазолин.
- **Ø** Формы выпуска:
- **Ø** флаконы 0,1 и 0,05% 10 мл

- Возбуждает α₂адренорецепторы,
 находящиеся на поверхности
 эндотелиальных клеток,
 вызывая сосудосуживающий
 эффект.
- **В** результате уменьшается отек и восстанавливается носовое дыхание.
- **Ø** На ЦНС оказывает угнетающее действие.

Побочные действия.

- редко отек слизистой оболочки носа, сердцебиение, нарушение сердечного ритма, повышение АД, головная боль, рвота, расстройство сна, беспокойство, нарушение зрения, депрессия (при длительном применении в высоких дозах).

OTDUBUH

Показания:

- **Остановка носовых кровотечений.**

Противопоказания:

- **Ø** Атеросклероз.
- **Ø** Гипертензия.
- **Ø** Тахикардия.

b_1 -адреномиметики.

Добутамин (добутрекс): Dobutamine, syn. Dobutrex

Формы выпуска:

Øфлаконы по 0,25

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \text{--CH}_2 \text{--NH} \text{---CH}_2 \text{---CH}_2 \text{----OH} \\ \text{HO} \end{array}$$

Добутамин (добутрекс)

- **Мало влияет на частоту сердечных сокращений.**

Добутамин (добутрекс)

- **О** Активирует b_1 -адренорецепторы сердца;
- **У**величивает сократимость миокарда и сердечный выброс.
- При возбуждении β₁ адренорецепторов в клетках атриовентрикулярного узла ускоряются фазы 0 и 4 потенциала действия облегчается атриовентрикулярная проводимость и повышается автоматизм.
- При возбуждении β₁- адренорецепторов повышается автоматизм волокон Пуркинье.
- При возбуждении β₁,- адренорецепторов юкстагломерулярных клеток почек увеличивается секреция ренина.

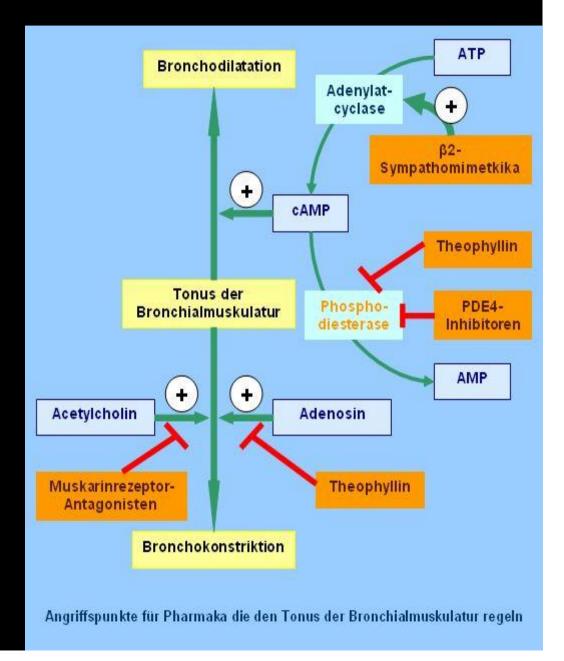
Добутамин (добутрекс)

Показания:

О Декомпенсация сердечной деятельности (кратковременное применение).

Побочные эффекты:

- **Ø** Аритмии.
- **Ø** Повышение АД.

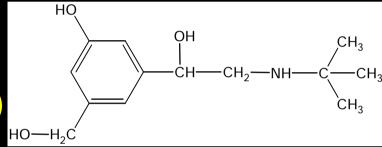

ПРЕПАРАТЫ, СТИМУЛИРУЮЩИЕ ПРЕИМУЩЕСТВЕННО БЕТА-АДРЕНОРЕЦЕПТОРЫ

Агонисты В - адренорецепторов

Короткодействующие			
Неселективные ЛП $(\beta_{1,2})$	Изопреналин (Изадрин) Орципреналин (Алупент, астмопент)		
Селективные ЛП (В2)	Сальбутамол (Вентолин)	Фенотерол (Беротек, партусистен)	
Пролонгированные			
Селективные ЛП (В2)	Формотерол (Форадил)	Сальметерол (Серевент)	

Агонисты В₂ - адренорецепторов

- Учитывая ряд побочных эффектов, связанных с возбуждением бета-1адренорецепторов сердца, особенно неприятным из которых является тахикардия, возникающая при купировании изопреналином приступов бронхиальной астмы, были синтезированы препараты с преимущественным влиянием на бета-2адренорецепторы.
- В настоящее время таких препаратов довольно много, они объединены в группу селективных бета-2-адреномиметиков.


Агонисты В₂ - адренорецепторов

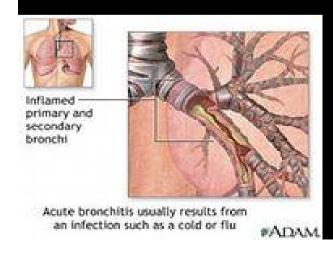
Ø Сальбутамол (вентолин): Salbutamol, syn. Ventolin

Формы выпуска:

Ø аэрозоль 10 мл (200 доз)

Ø табл. по 0,002 и 0,004

Сальбутамол (вентолин)


- Возбуждает преимущественно b2адренорецепторы (бронхов, кровеносных сосудов и миометрия), действуя в течении 4-6 часов.
- **ОРасширяет бронхи**;
- Предотвращает выход гистамина и медленнореагирующей субстанции анафилаксии;

Сальбутамол (вентолин)

Показания:

- **Бронхиальная астма (купирование приступов).**
- **У** Хронический обструктивный бронхит (купирование приступов).
- **Ø** Эмфизема легких.

Агонисты В2 - адренорецепторов

Фенотерол (беротек, партусистен): Phenoterolum, syn. Partusisten

Формы выпуска:

- **В** во флаконах по 15 мл, что составляет 300 разовых доз.
- **Ø** табл. по 0,005
- **Ø** используется для внутривенного введения.

 □

$$\begin{array}{c} \text{OH} \\ \text{CH---}\text{CH}_2\text{---}\text{NH---}\text{CH}_3 \\ \text{CH}_2\text{---}\text{OH} \\ \text{CH}_2\text{---}\text{OH} \end{array}$$

Фенотерол (беротек, партусистен)

- По механизму действия, эффектам и применению сходен с сальбутамолом.
- Ио обладает более выраженным токолитическим эффектом, и поэтому чаще используют при угрозе преждевременных родов.

Фенотерол (беротек, партусистен)

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ.

- **Д** для купирования приступов бронхиальной астмы (ингаляционно, внутрь, парентерально);
- Для снижения сократительной активности миометрия (токолитик) с целью профилактики преждевременных родов. Вводят в вену капельно при угрозе выкидыша, преждевременных родах и плацентарной недостаточности. Доза препарата для токолитического эффекта более высокие, чем для расширения бронхов. Прием фенотерола является более безопасным по сравнению с другими токолитиками, так как его метаболиты не способны проникать через плаценту.

Беродуал Н

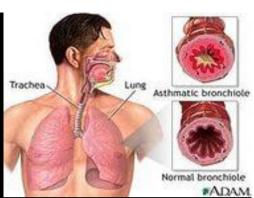
- Возможность применения у больных с сопутствующей сердечно-сосудистой патологией.
- **Безопасный клинический профиль за счет снижения дозы симпатомиметика.**
- Расширенный спектр применения БА и ХОБЛ либо их сочетание у одного больного.
- **Ø** Беродуал H-ДАИ 200 доз.
- Режим дозирования: 2 дозы 3 раза в день.

Пролонгированные агонисты $β_2$ - адренорецепторов

- ОСуществуют препараты длительного действия: сальметерол (серевент), формотерол (форадил).
- **Ø** Эффект этих препаратов длиться от 8 до 12 часов.
- ОСелективность указанных препаратов не абсолютна, поэтому слово "селективные" пишут в кавычках.

Фармакологическая и клиническая характеристика некоторых **В2** -адреностимуляторов

Параметр ЛС	Сальбутамол	Формотерол	Сальметерол
Селективность, по отношению к ß - адренорецепторам	Достаточно высокая	Высокая	Очень высокая
Аффинность, по отношению к ß - адренорецепторам	Высокая	Высокая	Высокая
Начало бронхолитического действия, мин	<4	1-3	10
Максимум бронхолитического действия	30 мин	2ч	2-4ч
Продолжительность бронхолитического действия, ч	4-6	8-10	12
Растворимость в липидах	Низкая	Умеренная	Высокая

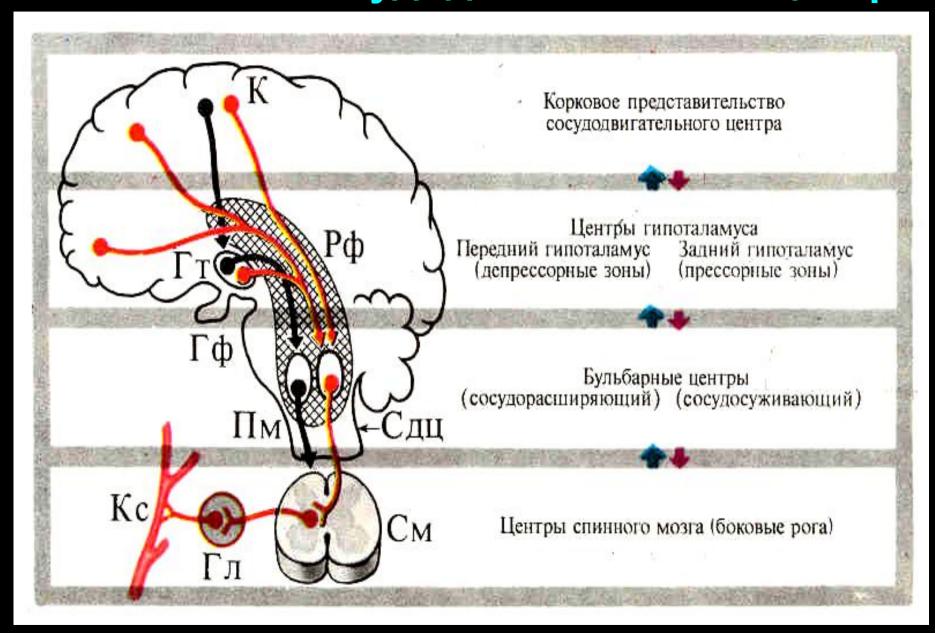

Уровень доказательности использования агонистов при приступах бронхиальной астмы

	Triphory nax openix nation ae inibi
Уровень доказательности рекомендаций	Рекомендации
ONCUC Typolyxanep	При приступах бронхиальной астмы ингаляционное назначение β_2 —агонистов более предпочтительное, чем внутривенное. О Комбинация β_2 —агонистов и М — холинолитиков более эффективна, чем применение этих средств по отдельности. О Назначение β_2 —агонистов в виде дозированных аэрозолей со спейсером и небулайзером демонстрирует одинаковую эффективность. О комбинация β_2 —агонистов в виде дозированных аэрозолей со спейсером и небулайзером демонстрирует одинаковую эффективность. О комбинация β_2 —агонистов в виде дозированных аэрозолей со спейсером и небулайзером демонстрирует одинаковую эффективность. О комбинация β_2 —агонистов в виде дозированных аэрозолей со спейсером и небулайзером демонстрирует одинаковую эффективность. О комбинация β_2 —агонистов и м — холинолитиков более эффективность. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков более эффективности. О комбинация β_2 —агонистов и м — холинолитиков фолее урасти β_2 —агонистов и м — холинолитиков и м — холинолитиков и м — холинолитиков и м — холинолит
В	Ø Частые ингаляции β_2 —агонистов более эффективны, чем их назначение через длительные интервалы времени в одинаковой суммарной дозе.
C	\emptyset Адреналин может применятся в некоторых случаях тяжелых обострений бронхиальной астмы еще до назначения больному \mathfrak{B}_2 —агонистов. \emptyset Комбинация внутривенных инъекций магнезии с ингаляциями \mathfrak{B}_2 —агонистов более эффективна, чем назначение только \mathfrak{B}_2 —агонистов.

Рекомендации по применению ß2-агонистов при стабильном течении бронхиальной астмы

Уровень доказательности	Рекомендации		
A	Ø В ₂ -агонисты короткого действия не должны рекомендоваться для применения в качестве базисной		
CAMBUNOT TO SAN A DESTRUCTION OF THE SAN ADDRESS OF	терапии астмы. ØНаличие у больного потребности в ежедневном приеме β_2 —агонистов является показанием к назначению противовоспалительной терапии. ØНа фоне применения β_2 —агонистов длительного действия должен быть продолжен прием β_2 —агонистов короткого действия для контроля за симптомами бронхиальной астмы.		
В			
C	ØПероральные β₂−агонисты следует рассматривать, как препараты второго ряда по отношению к ингаляционным бронхолитикам.		

Агонисты В - адренорецепторов


Все β-адреномиметики противопоказаны при:

- *б* тиреотоксикозе,
- **Ø** артериальной гипертензии,
- **Ø** атеросклерозе,
- **ØИБС**,
- **Ø** аритмии,
- ØCH,
- **Ø** сахарном диабете.

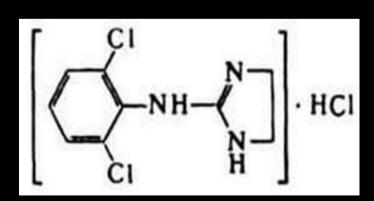
Антигипертензивные препараты центрального действия

Компоненты сосудодвигательного центра

Центральные антигипертензивные препараты

Активаторы а2-адрено- и Селективные активаторы **І**₁-имидазолиновых **1**₁-имидазолиновых рецепторов рецепторов **ОМоксонидин** (ЦИНТ, **Ø**Клонидин (клофелин) **Ø**Метилдопа (метилдофа, физиотенз) допегит, альдомет) **ØРилменидин (альбарел)**

Основной механизм гипотензивного действия:


Понижение тонуса сосудодвигательного центра вследствие активации тормозных центров промежуточного мозга.

Дополнительные положительные эффекты:

Регрессия гипертрофии миокарда при артериальной гипертензии.

О Случайно была обнаружена его выраженная способность снижать артериальное давление, связанная со стимуляцией α₂-адренорецепторов и имидазолиновых I₁-рецепторов в продолговатом мозге.

Эффекты

Центральный гипотензивный эффект

Эффекты

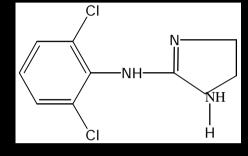
- Оказывает седативный эффект за счет центрального действия (возбуждение α2-адренорецепторов ЦНС, что приводит к снижению освобождения ацетилхолина, норадреналина, дофамина, глутаминовой и аспарагиновой аминокислот).
- **О Снижение внутриглазного давления**
- Оказывает также седативное, анальгетическое действие, потенцирует действие этилового спирта, уменьшает абстинентный синдром при зависимости к опиоидам.

- ✓ При приеме внутрь латентный период препарата 30 60 минут, при внутривенном введении 3-6 минут.
- **При энтеральном применении длительность действия препарата варьирует от 2 до 24 часов.**

При внутривенном введении лекарства гипотензивному действию может предшествовать кратковременное повышение артериального давления из-за стимуляции внесинаптических а₂-адренорецепторов сосудов.

Побочные эффекты:

- **О Сухость слизистых оболочек полости рта.**
- **О Сонливость.**
- **Ø** Запоры.
- **Импотенция.**
- **Выраженный синдром отмены.**
- **Ø** Эффект первой дозы.
- **Ø** Привыкание.



00

Применение

- **Обезболивание в хирургической практике (реже)**
- **Ø** Глаукома 0,25% p-p
- Клонидин может быть эффективен для профилактики мигрени, для уменьшения абстиненции при лекарственной зависимости к опиоидам.

Клонидин (клофелин): Clonidine, syn. Clophelinum

Формы выпуска:

- **Ø** табл. по 0, 000075 и 0,00015
- **Ø** амп. 0,1% 1 мл
- **Ø** глазные капли 0,25 и 0,5% 1,5 мл

Rp: Clonidine 0,000075 (0,00015)

D.t.d. N. 50 in tab.

S. По 1 таблетке под язык для купирования гипертонического криза

Метилдопа (допегит, альфадопа, допанол): Methyldopa

$$HO$$
 CH_{2}
 CH_{3}
 OH_{2}
 OH

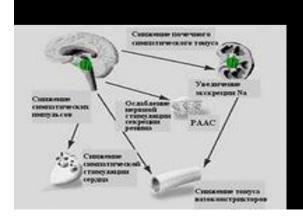
Формы выпуска:

Øтабл. по 0,25

Метилдопа (допегит)

Метилдопа (допегит) превращается в а-метил- норадреналин, который является стимулятором центральных а₂- адренорецепторов.

Метилдопа (допегит, альфадопа, допанол)


- ∅ По химической структуре это вещество близко к одному из промежуточных продуктов синтеза норадреналина диоксифенилаланину (ДОФА).
- Ø Этот препарат способен вступать в конкурентные отношения с ДОФА за фермент, который обеспечивает декарбоксилирование последнего и его переход в дофамин.

Метилдопа (допегит, альфадопа, допанол)

- О Сейчас установлено, что образующийся из метилдопы метилнорадреналин может выполнять роль селективного альфа2-адреномиметика аналогично клонидину, что и объясняет его центральный антигипертензивный эффект.

Метилдопа (допегит, альфадопа, допанол)

- **Препарат назначают внутрь по 0, 25 г 3-4 раза в день.**
- **Ø** Обычно используют для лечения артериальной гипертензии у беременных.

Антигипертензивные препараты центрального действия

	Homparibilet Honorbini			
Группа	Отдельные препараты			
Селективные активаторы I ₁ -имидазоли-новых	Ø Моксонидин (цинт, физиотенз) − дополнительным механизмом гипотензивного действия является угнетение РААС.			
рецепторов	Ø Максимальная концентрация препарата в крови регистрируется через 0,5 −3 часа.			
MOKCOHMONH 200 M	Ø Несмотря на короткий период полужизни (около 3 часов), он контролирует артериальное давление в течение суток.			
	Ø Препарат назначается по 0,2-0,4 мг один раз в сутки (утром).			
АПЬБАРЕЛ 1 == Резелент 10 volume	Ø Рилменидин (альбарел). Дозирование: от 1 мг 1 раз в день утром до 2 мг в 2 приема			

Побочные эффекты центральных гипотензивных средств

Активаторы а₂адрено- и I₁имидазолиновых рецепторов **ü** при внезапной отмене препаратов возникае "отдачи";

ü эффект «первой дозы»;

Ü постуральная гипотензия;

ü седативное и гипногенное действие;

ü замедление скорости психических и физических реакций;

ü снижение аппетита и секреции слюнных желез;

Ü повышенная утомляемость

Селективные активаторы I₁-имидазолиновых

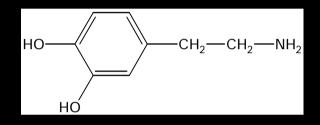
Физиотенз®

Abbott

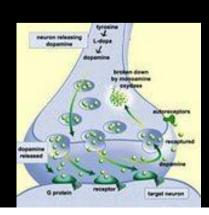
рецепторов

ü повышенная утомляемость;

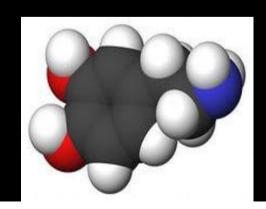
ü головные боли, головокружение, нарушение сна;


і сухость во рту

Дофаминомиметики


Дофаминомиметики делят на 2 группы:

- М Непрямого действия, влияющие на пресинаптические дофаминовые рецепторы, регулирующие синтез и выделение дофамина и норадреналина (леводопа, мидантан и др.).
- **Прямого действия, влияющие на постсинаптические дофаминовые рецепторы (дофамин, бромокриптин).**


- **Ø** Дофамин (допамин, допмин): Dophaminum
- Формы выпуска:
- **Ø** амп. 0,5% и 4% p-р по 5 мл

- **Действие дофамина** отличается своеобразием и обусловлено как прямым, так и непрямым действием на рецепторы.
- **У** Эффект препарата значительно варьирует в зависимости от дозы.
- **О** Дофамин, так же как адреналин и норадреналин, действует непродолжительно (менее 10 минут), его эффект хорошо управляем.

- В малых дозах (0,5-2 мкг/кг/мин) дофамин возбуждает периферические дофаминовые рецепторы, вызывая расширение сосудов: мезентериальных, почечных, конечностей, коронарных, остальные сосуды суживаются.
- В дозе 3-8 мкг/кг/мин вызывает активацию b1-адренорецепторов (путем вытеснения норадреналина из пресинаптических окончаний), что приводит к увеличению силы сердечных сокращений, сердечного выброса. При этом повышается кислородный запрос миокарда и существует опасность возникновения аритмии.
- В больших дозах (8-20 мкг/кг/мин) в действии дофамина преобладает стимуляция а1-адренорецепторов (по-видимому обусловленное непосредственной стимуляцией дофамином данных рецепторов и увеличения уровня норадреналина в пресинаптическом окончании), что вызывает сужение сосудов, подъем артериального давления и спазм сосудов почек.

- Учитывая особенности действия дофамина на гемодинамику, его предпочтительнее назначать больным, которым требуется и увеличение сердечного выброса, и нормализация почечного кровотока, и повышение артериального давления при отсутствии у них тахикардии и аритмии.
- Длительность внутривенных инфузий дофамина индивидуальна, но не должна быть больше 2-3 дней, т.к. к этому времени к нему развивается тахифилаксия, и эффект намного снижается.

Показания:

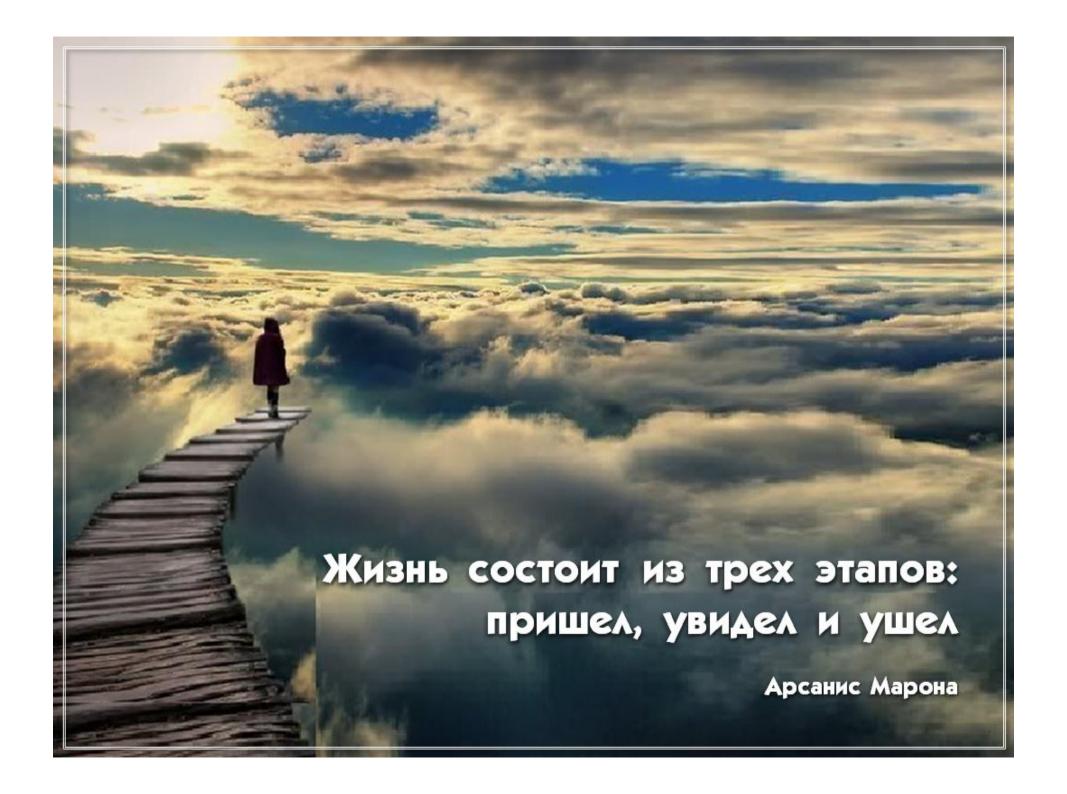
- **Ø** Кардиогенный шок.
- **Ø** Нефросклероз.
- **Острая почечная недостаточность.**

Бромокриптин (парлодел, серокриптин): Bromocriptene

Формы выпуска:

- **Ø** табл. по 0,0025
- **О Агонист дофаминовых рецепторов прямого действия.**
- Является полусинтетическим производным алкалоида спорыньи (эргокриптина).

Бромокриптин (парлодел, серокриптин): Bromocriptene


Показания:

- Гиперпролактинемия у мужчин. Подавление послеродовой лактации.
- Аменорея, женское бесплодие.
- **Доброкачественные** заболевания молочных желез.
- Акромегалия.
- Паркинсонизм (30-40 мг и более в сутки).

Побочные эффекты:

- 💋 Тошнота, рвота.
- **Ø** Обмороки.
- Ортостатическая гипотензия.
- При применении высоких доз препарата у больных паркинсонизмом могут встречаться сонливость, галлюцинации, спутанность сознания, нарушение зрения, сухость во рту, спазмы икроножных мышц, за брюшной фиброз. Данные побочные реакции дозозависимы.
- Детям до 15 лет, из-за недостаточного опыта применения препарат не показан.

